Recent Beam-Beam Compensation Studies and General Plan

Vladimir Shiltsev for BBC team Fermilab

2/22/2006

Three e-beam current profiles

Lifetime and Emittance growth with TEL

Summary studies:

- With new SEFT (smooth edge flat top) gun
- · Lifetime time is
- · as good as 700 hrs in DC beam regime
- and 340 hrs in pulsed regime
- No significant difference found between DC pulsed and no-beam regime
- Except some moments when we move/turn TEL pulse Off

Timing jitter matters on the slopes

5

Tev Tune vs e-beam position

Feb 17^{th, 2006}
beam study
EoS 1x1 store
40 pi emittances

1.7 GHz Schottky tunes

Hard to see anything in 21MHz Schottky spectra
Unless de-centered or mistimed

21MHz Schottky power vs e-beam

Feb 17^{th, 2006}
beam study
EoS 1x1 store
40 pi emittances

TEL current ripple

• About 1-2%

17 Feb 200 17:00:37

Further experimental work:

- Finish TEL-2 BPM data processing and conclude on new BPM/algorithm quality
- Get rid of 15-120 Hz ripple; figure why we blow up beam when turning OFF, monitor J_peak
- In-store study
- · Generate combined BBC+cleaning pulse structure
- Build spare SEFT e-guns with modified HV feedthru?
- Explore possibility of grid:
 - will be perfect for cleaning (i.e. in one of TELs)
 - sheering of grid shadow in the TEL
- Conclude MARX generator development
- Better single bunch tune measurement/Schottky power measurement:
 - 1.7GHz Schottky
 Schottky III (J.P.C and Alex Semenov) -for centering

Shutdown work:

- Install two bypasses at A1 (3rd-8th week)
- Install TEL-2 (5th-6th week)
- Pull ~12 heliax cables (any time)
- Install shielding (at the end)
- Pump, leak check, bake (1 week)
- Commission hardware and PSs (1 week)
- · Commission with beam:
 - for cleaning (as spare)
 - For BBC:
 - · First alone
 - Then together with TEL-1

Simulations/Tracking Needs:

- Effect of low-frequency variations dJ, dX @
 15 Hz, 60Hz, 120 Hz, etc on beam lifetime
- Importance of e-pbar(p) interaction in bending section
- Grid shadow (sheered) effect
- Lifetime deterioration due to e-pbar(p) misalignment: position, angle
- Head-on compensation with Gaussian e-beam: dependence on beta_TEL vs beta*
- · Cross-interaction with wires in LHC -?

Overall Plan:

- Have two TELs commissioned and employed for compensation of some beam-beam effects (emittance or lifetime? Phars or Protons?

 Parasitic or head-on? 980 or 150 GeV? in 2007-2009
- Perform simulations and convince that TEL can be tested at RHIC 2007-2009
- Install TEL(1? 2?) in RHIC and demonstrate head-on compensation 2009-2010
- Install and employ at LHC 2011-2012

